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Consideration is given to two systems of equations of transfer of correlations of particle-velocity and tempera-
ture pulsations, which differ in the method of closing. A closed description of the heat transfer of the solid
phase is carried out at the level of equations for second moments in the first case and for third moments in
the second case. A comparative analysis of the two methods of calculation of the ascending nonisothermal
flow of a gas suspension is made based on numerical investigations.

Representation of the field of a nonisothermal turbulent dispersed flow in the form of averaged and pulsatory
motions observed in actual flows has given rise to the second moments of particle-velocity and temperature pulsations
in the initial momentum and energy equations. The fundamental difficulty in the path of development of this trend lies
with modeling unknown correlation terms of the above equations. We must note that theoretical models of this class
of flows have been developed to a lesser extent than the methods of calculation of momentum transfer in the solid
phase in isothermal flows. Turbulent heat transfer in the dispersed phase is modeled, as a rule, on the basis of the gra-

dient representations stp′ vp′t = 
λpdtp

cpρp∂r
 [1] or algebraic locally equilibrium models in which the turbulent heat flux in

the solid phase is directly related to the Reynolds pulsation heat transfer in the carrier medium stg′ vg′t [2]. The wish

to overcome the boundedness of the above models gave rise to more complex turbulence models based on additional
differential equations of transfer of the moments of particle-velocity and temperature pulsations. In [3], the variable

stp′ vp′t was computed from the equation of transfer of the variable itself. Triple correlations of the type stp′ vp′2 t and

stp′wp′2 t that were present in this equation were found using gradient models. In [4], a chain of truncated equations of

transfer of the third moments of particle-velocity and temperature pulsations was constructed with the kinetic equation
for the probability-density function; the algebraic relations relating the triple correlations to those double were deter-
mined from these equations. This made it possible to obtain a closed description of the heat transfer of the dispersed
phase at the level of equations for second moments.

In the present work, we make an attempt (probably for the first time) to obtain, within the framework of the
Eulerian approach, i.e., in the case of the so-called two-fluid models, a closed description of the heat transfer of the
solid phase at the level of equations for triple correlations. For this purpose, using the computational procedure devel-
oped [5, 6], we have obtained a chain of axisymmetric averaged equations of transfer of the second, third, and fourth
moments of particle-velocity and temperature pulsations on the portion of stabilized ascending motion of a gas suspen-
sion with allowance for convective and radiant heat exchange and for the drag force. The equations for the correlations
of fourth order are closed on the basis of representation of the fifth moments present in these equations as the sum of
the products of those second and third. This enabled us to obtain, from the equations for fourth moments, algebraic
relations expressing the fourth correlations by the second and third moments and their gradients. Furthermore, in this
work, we compare two methods of closing: the first method closes at the level of equations for second moments,
whereas the second method, at the level of equations of transfer of triple correlations.
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In constructing a system of equations of transfer of the averaged and pulsation characteristics of a nonisother-
mal chemically reactive two-phase flow, we take the following simplifying prerequisites: (1) the process is stationary;
(2) the stoichiometric scheme of the reactions includes one heterogeneous reaction C + O2 = CO2; (3) the volume con-
centration of the solid phase and the mass concentrations of carbon in particles and oxygen in the carrier medium are
constant over the entire cross section of the tube; (4) the dispersed phase consists of monodisperse spherical coke-ash
particles; (5) there is no averaged radial and transversal phase motion on the portion of stabilized flow of the gas sus-
pension and the averaged parameters do not change in the axial direction.

Basic Equations. With allowance for what has been said above, we can represent the system of equations of
momentum and energy transfer in a two-phase medium in the form
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The left-hand sides of Eqs. (1) include the viscous and Reynolds stresses, the pressure gradient, and the drag and gravity
forces. Terms allowing for pulsation heat transfer in the solid phase, heat exchange between the carrier medium and
the dispersed phase, and heat release due to the heterogeneous chemical reaction appear in (2). The molecular and tur-
bulent transfer of the gas flow, the work of Reynolds stresses and pressure and interphase-interaction forces, and radiant
and convective heat exchange between the gas and particles are allowed for in (3). The first term of Eq. (4) describes
the diffusion of the pulsation energy of the carrier medium, the second term describes its generation due to the aver-
aged-motion energy, the third and fourth terms describe its dissipation due to the viscosity of the gas and the presence
of the solid phase in it, and the last term describes the generation of turbulent energy in the trails behind particles.
The unknown correlation stp′ vp′ t, which in turn is dependent on the second and third moments, is present in Eq. (2).
Therefore, we must construct the transfer equations for the correlations sought to close the above system of equations.

Equations of Transfer of the Second Moments. To derive the equations of transfer of the variables stp′ vp′ t
and stp′wp′ t we must primarily obtain the equations of pulsatory motion and energy of particles. The equations of pul-
satory motion of the dispersed phase along the radial and transversal axes have been obtained in [7]. With allowance
made for the axial symmetry of the problem (∂ ⁄ ∂ϕ = 0), we can write the mentioned equations in the form
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Applying the Reynolds procedure to the actual equation of particle energy
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we arrive at the pulsation equation of heat transfer in the solid phase:
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To construct the equation of transfer of the correlation moment stp′ vp′ t we must multiply Eq. (5) by the quan-
tity tp′  and Eq. (9) by vp′  and thereafter combine the resulting equations:
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Using expressions (7) and the pulsation continuity equation premultiplied by the quantity tp′ vp′ , we transform (10), after
which we carry out averaging in the equation obtained. On the portion of stabilized motion of the two-phase flow, the
equation of transfer of the second moment stp′ vp′ t has the form
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In the same manner, we can obtain the equation of transfer of the correlation stp′wp′ t:
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The mixed moments (gas–particle) present in Eqs. (11) and (12) are determined in terms of the correlations
of the carrier flow in a locally homogeneous approximation in accordance with the recommendations of [2], whereas
the second moments of pulsations of the translational velocity of the dispersed phase svp′2 t and swp′ vp′ t are computed
according to [5].

Closing at the Level of the Equations of Transfer of the Correlations stp′ vp′ t and stp′wp′ t. The unknown
third moments stp′wp′ vp′ t, stp′ vp′2 t, and stp′wp′2 t appear in Eqs. (11) and (12). To compute them we construct the equa-
tions of transfer of the correlations sought. Let us use the equation for the third moment stp′wp′ vp′ t to illustrate the deri-
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vation of these equations. We multiply the pulsation equation (5) by the quantity wp′  and Eq. (6) by vp′  and combine
the resulting equations:
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Next, we multiply (13) by the quantity tp′  and Eq. (9) by wp′ vp′ , after which we sum up these equations. Disregarding
mixed triple correlations (gas–particle) and using expressions (7), we can reduce the equation of transfer of the quan-
tity stp′wp′ vp′t to the following form:

up 
∂tp′wp′ vp′
∂z

 + vp 
∂tp′wp′ vp′
∂r

 + up′  
∂tp′wp′vp′
∂z

 + vp′  
∂tp′wp′ vp′
∂r

 + tp′ up′wp′  
∂vp

∂z
 + tp′wp′ vp′  

∂vp

∂r

+ up′wp′ vp′  
∂tp
∂z

 + wp′ vp′
2  
∂tp
∂r

 − 
tp′wp′

3

r
 + 

tp′wp′  swp′
2 t

r
 + 

vptp′wp′ vp′
r

 + 
tp′wp′ vp′

2

r
 − 

vp′ tp′  swp′ vp′ t
r

− 
tp′wp′ ∂ sup′ vp′ t

∂z
 − 

tp′wp′ ∂ (r svp′
2 t)

r∂r
 − 

tp′ vp′ ∂ sup′wp′t
∂z

 − 
tp′ vp′ ∂ (r swp′ vp′ t)

r∂r
 − 

wp′ vp′ ∂ stp′up′ t
∂z

− 
wp′ vp′ ∂ (r stp′ vp′ t)

r∂r
 = − ψ2tp′wp′vp′  ,   ψ2 = 

6αΣ
ρpcpδ

 + 
2

τ
 . (14)

We transform (14) using the pulsation continuity equation premultiplied by the quantity tp′wp′ vp′ . Then we carry out av-
eraging in the final equation. On the portion of stabilized motion of the gas suspension, we write the equation of
transfer of the sought correlation stp′wp′ vp′ t:
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Analogously we can obtain transfer equations for the correlations stp′ vp′2 t and stp′wp′2 t. We give these equations without
derivation:

∂ (r stp′ vp′
3 t)

2r∂r
 + 
svp′

3 t ∂tp
2∂r

 − 
stp′wp′

2 vp′ t
r

 − 
svp′

2 t ∂ (r stp′ vp′ t)
2r∂r

 − 
stp′ vp′t ∂ (r svp′

2 t)
r∂r

+ 
stp′ vp′ t swp′

2 t

r
 = − ψ1 stp′ vp′

2 t ,   ψ1 = 
3αΣ
ρpcpδ

 + 
1

τ
 , (16)

1161



∂ (r stp′wp′
2 vp′ t)

2r∂r
 + 
stp′wp′

2 vp′ t
r

 − 
stp′wp′ t swp′ vp′t

r
 − 
stp′wp′t ∂ (r swp′ vp′ t)

r∂r

+ swp′
2 vp′ t 

∂tp
2∂r

 − 
swp′

2 t ∂ (r stp′ vp′ t)
2r∂r

 = − ψ1 stp′wp′
2 t . (17)

In (15)–(16), there are the fourth moments which can be expressed similarly to [5]:
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To obtain a system of parabolic equations of transfer of the second moments we must substitute expressions
(19)–(21) into (11) and (12). Finally,

the equation of transfer of the quantity stp′ vp′ t is
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and the equation of transfer of the quantity stp′wp′ t is
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The unknown moments of second swp′wp′ t and third svp′ vp′ vp′ t, svp′wp′wp′ t, svp′ vp′wp′ t orders of particle-velocity pulsa-
tions, which are determined according to [5], appear in Eqs. (22) and (23). Thus, we have obtained a closed descrip-
tion of the heat transfer of the solid phase at the level of equations for second correlations.

Closing at the Level of the Equations of Transfer of the Triple Correlations stp′wp′ vp′t, stp′ vp′2 t, and
stp′wp′2 t. The fourth moments stp′wp′2 vp′ t, stp′ vp′3 t, stp′wp′ vp′2 t, and stp′wp′3 t for which, as has been mentioned above, we
must obtain their own transfer equations appear in Eqs. (15)–(17). Let us use the equation for the variable stp′wp′ vp′2 t
to illustrate derivation of these equations. We multiply the pulsation equation (14) by the quantity vp′  and Eq. (5) by
tp′wp′ vp′ , after which we sum up these equations. We transform the resulting equation using expression (7) and the pul-
sation continuity equation premultiplied by the quantity tp′wp′ vp′2. Then we carry out averaging in the final equation.
Disregarding mixed correlation moments (gas–particle), we write the equation of transfer of the sought quantity
stp′wp′ vp′2 t for the portion of steady-state motion of the gas-dispersed flow:
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Equation (24) contains the fifth moments which, similarly to [6], can be represented in the form of the sum of the
products of correlations of second and third moments. With allowance for this fact, we transform the equation indi-
cated to the form
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2 t

2r
 − 

3 swp′ vp′ t stp′wp′
2 t

r
 − 
stp′ vp′ t swp′

3 t

r
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+ 
swp′

2 t stp′wp′ vp′ t
r

 + 
3 svp′

2 t swp′ vp′ t ∂tp
2∂r




 . (25)

In a similar manner, we can obtain transfer equations for the remaining correlations sought:

stp′ vp′
3 t = − 

1

ψ3
 




svp′
2 t ∂ stp′ vp′

2 t

∂r
 + 
stp′ vp′t ∂ svp′

3 t

3∂r
 + 
svp′

2 t
2
 ∂tp

∂r
 − 
svp′

2 t stp′wp′
2 t

r

− 
2 swp′ vp′ t stp′wp′ vp′t

r
 − 
swp′

2 vp′ t stp′ vp′ t
r

 + 
stp′ vp′

2 t swp′
2 t

r



 ,     ψ3 = 

2αΣ
ρpcpδ

 + 
1

τ
 ,

 
(26)

stp′wp′
2 vp′ t = − 

1

ψ4
 




svp′
2 t ∂ stp′wp′

2 t

2∂r
 + 
swp′ vp′ t ∂ stp′wp′ vp′ t

∂r
 + 
stp′vp′ t ∂ svp′wp′

2 t

2∂r

+ 
svp′

2 t stp′wp′
2 t

r
 + 
swp′ vp′ t stp′wp′ vp′ t

r
 + 

swp′
2 vp′ t stp′ vp′ t

r
 − 
swp′

2 t stp′wp′
2 t

r

− 
swp′

3 t stp′wp′ t
2r

 + 
svp′

2 t swp′
2 t ∂tp

2∂r
 + 

swp′ vp′ t
2
 ∂tp

∂r




 , (27)

stp′wp′
3 t = − 

1

ψ3
 




swp′ vp′ t ∂ stp′wp′
2 t

∂r
 + 
stp′ vp′ t ∂ swp′

3 t

3∂r
 + 

2 swp′ vp′t stp′wp′
2 t

r

+ 
swp′

3 t stp′vp′ t
r

 + 
swp′ vp′ t swp′

2 t ∂tp
∂r




 . (28)

Substituting (25)–(28) into Eqs. (15)–(17), we obtain a system of parabolic equations of transfer of the third
moments:

the equation of transfer of the quantity stp′wp′2 t

− 
∂

4r∂r
 




r svp′
2 t

ψ4

 
∂ stp′wp′

2 t

∂r




 − 

∂

2r∂r
 




r swp′ vp′ t

ψ4

 
∂ stp′wp′ vp′t

∂r





− 
∂

4r∂r
 




r stp′ vp′t

ψ4

 
∂ swp′

2 vp′ t

∂r




 − 

∂

2r∂r
 




svp′
2 t stp′wp′

2 t

ψ4




 − 

∂

2r∂r
 




swp′ vp′ t stp′wp′ vp′ t

ψ4





− 
∂

2r∂r
 




stp′ vp′ t swp′
2 vp′ t

ψ4




 + 

∂

r∂r
 




swp′
2 t stp′wp′

2 t

ψ4




 + 

∂

4r∂r
 




swp′
3 t stp′wp′ t

ψ4





− 
∂

4r∂r
 




r svp′
2 t swp′

2 t

ψ4

 
∂tp

∂r




 − 

∂

2r∂r
 




r swp′ vp′t
2

ψ4

 
∂tp

∂r




 − 
svp′

2 t

2ψ4

 
∂ stp′wp′

2 t

r∂r
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− 
swp′ vp′ t

ψ4

 
∂ stp′wp′ vp′ t

r∂r
 − 
stp′ vp′ t

2ψ4

 
∂ swp′

2 vp′t

r∂r
 − 
svp′

2 t stp′wp′
2 t

ψ4r
2  − 

swp′vp′ t stp′wp′ vp′ t

ψ4r
2

− 
swp′

2 vp′ t stp′ vp′ t

ψ4r
2  + 

swp′
2 t stp′wp′

2 t

ψ4r
2

 + 
swp′

3 t stp′wp′ t

2ψ4r
2

 − 
svp′

2 t swp′
2 t ∂tp

2ψ4r∂r
 − 
swp′ vp′ t

2

ψ4

 
∂tp

r∂r

 − 
stp′wp′ t swp′ vp′ t

r
 − 
stp′wp′ t ∂ (r swp′ vp′ t)

r∂r
 + 

swp′
2 vp′ t

2
 
∂tp

∂r
 − 

swp′
2 t

2
 
∂ (r stp′vp′ t)

r∂r
 = − ψ1 stp′wp′

2 t ; (29)

the equation of transfer of the quantity stp′ vp′2 t

− 
∂

2r∂r
 




r svp′
2 t

ψ3

 
∂ stp′ vp′

2 t

∂r




 − 

∂

6r∂r
 




r stp′ vp′ t

ψ3

 
∂ svp′

3 t

∂r




 − 

∂

2r∂r
 




r svp′
2 t

2

ψ3

 
∂tp

∂r





+ 
∂

2r∂r
 




svp′
2 t stp′wp′

2 t

ψ3




 + 

∂

r∂r
 




swp′ vp′ t stp′wp′ vp′t

ψ3




 + 

∂

2r∂r
 




swp′
2 vp′ t stp′ vp′ t

ψ3





− 
∂

2r∂r
 




stp′ vp′
2 t swp′

2 t

ψ3




 + svp′

3 t 
∂tp

2∂r
 + 

svp′
2 t

2ψ4

 
∂ stp′wp′

2 t

r∂r
 + 
swp′ vp′ t

ψ4

 
∂ stp′wp′ vp′t

r∂r

+ 
stp′ vp′ t ∂ swp′

2 vp′ t

2ψ4r∂r
 + 
svp′

2 t stp′wp′
2 t

ψ4r
2

 + 
swp′ vp′ t stp′wp′ vp′ t

ψ4r
2

 + 
swp′

2 vp′ t stp′ vp′ t

ψ4r
2

− 
swp′

2 t stp′wp′
2 t

ψ4r
2

 − 
swp′

3 t stp′wp′ t

2ψ4r
2

 + 
svp′

2 t swp′
2 t

2ψ4

 
∂tp

r∂r
 + 
swp′ vp′ t

2

ψ4

 
∂tp

r∂r

− 
svp′

2 t

2
 
∂ (r stp′ vp′t)

r∂r
 − stp′vp′t 

∂ (r svp′
2 t)

r∂r
 + 

stp′ vp′ t swp′
2 t

r
 = − ψ1 stp′ vp′

2 t , (30)

and the equation of transfer of the quantity stp′wp′ vp′ t

− 
∂

r∂r
 




r svp′
2 t

ψ4

 
∂ stp′wp′ vp′ t

∂r




 − 

∂

2r∂r
 




r swp′ vp′ t

ψ4

 
∂ stp′ vp′

2 t

∂r





− 
∂

2r∂r
 




r stp′ vp′ t

ψ4

 
∂ svp′

2 wp′ t

∂r




 − 

∂

r∂r
 




svp′
2 t stp′wp′ vp′ t

ψ4




 − 

∂

2r∂r
 




stp′ vp′ t svp′
2 wp′ t

ψ4





+ 
3∂

r∂r
 




swp′ vp′ t stp′wp′
2 t

ψ4




 + 

∂

r∂r
 




stp′ vp′ t swp′
3 t

ψ4




 − 

∂

r∂r
 




swp′
2 t stp′wp′ vp′ t

ψ4





− 
3∂

2r∂r
 




r svp′
2 t swp′ vp′ t

ψ4

 
∂tp

∂r




 + svp′

2 wp′ t 
∂tp

∂r
 + 
swp′ vp′ t

ψ3

 
∂ stp′wp′

2 t

r∂r
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+ 
stp′ vp′ t

3ψ3

 
∂ swp′

3 t

r∂r
 + 

2 swp′ vp′ t stp′wp′
2 t

ψ3r
2  + 

stp′ vp′ t swp′
3 t

ψ3r
2  + 

swp′ vp′ t swp′
2 t

ψ3

 
∂tp

r∂r

+ 
stp′wp′ t swp′

2 t

r
 − 
svp′

2 t

ψ4

 
∂ stp′wp′ vp′ t

r∂r
 − 
swp′ vp′ t

2ψ4

 
∂ stp′ vp′

2 t

r∂r
 − 
stp′ vp′ t

2ψ4

 
∂ svp′

2 wp′ t

r∂r

− 
svp′

2 t stp′wp′ vp′ t

ψ4r
2

 − 
stp′ vp′ t svp′

2 wp′ t

2ψ4r
2  + 

3 swp′ vp′t stp′wp′
2 t

ψ4r
2  + 

stp′vp′t swp′
3 t

ψ4r
2

− 
swp′

2 t stp′wp′ vp′ t

ψ4r
2  − 

3 svp′
2 t swp′ vp′ t

2ψ4

 
∂tp

r∂r
 − 

stp′ vp′ t swp′vp′t

r
 − stp′wp′ t 

∂ (r svp′
2 t)

r∂r

− 
stp′ vp′ t ∂ (r swp′ vp′ t)

r∂r
 − 
swp′ vp′ t ∂ (r stp′ vp′ t)

r∂r
 = − ψ2 stp′wp′ vp′ t . (31)

The unknown second and third moments of pulsations of the translational particle velocity which appear in
Eqs. (29)–(31) can be determined according to [5, 7]. Thus, we have obtained a closed description of the heat transfer
of the solid phase at the level of equations for triple correlations.

We have obtained two closed systems of equations, (1)–(4) and (19)–(23) and (1)–(4), (11), (12), and (25)–
(31), which describe the behavior of the ascending, nonisothermal, chemically reactive two-phase flow and differ in the
method of closing. Boundary conditions on the channel axis (r = 0) are specified for these systems for reasons of
symmetry

r = 0 :   ∂ug
 ⁄ ∂r = ∂kg

 ⁄ ∂r = ∂tg
 ⁄ ∂r = ∂up

 ⁄ ∂r = ∂ stp′ vp′ t ⁄ ∂r = ∂ stp′wp′ t ⁄ ∂r = 0 ,

∂ stp′wp′
2 t ⁄ ∂r = ∂ stp′ vp′

2 t ⁄ ∂r = ∂ stp′wp′ vp′ t ⁄ ∂r = 0 ,

and those on the tube wall (r = R) are prescribed by the relations

r = R :   ug = kg = 0 ,   tg = tw ,   up = 
δ (7Kn − 2Kτ − 5) ∂up

24 √2  β (1 − Kτ) ∂r
 ,

∂ stp′wp′
2 t ⁄ ∂r = ∂ stp′ vp′

2 t ⁄ ∂r = ∂ stp′wp′vp′t ⁄ ∂r = ∂ stp′ vp′ t ⁄ ∂r = ∂ stp′wp′ t ⁄ ∂r = 0 .

(32)

The above systems of equations with boundary conditions (32) were numerically integrated by the marching
method with iterations on a nonuniform grid clustering at the channel wall; the pressure gradient was eliminated using
the well-known method [8]. Based on the algorithms described, we developed programs with which numerical investi-
gations of the aerodynamics, heat and mass exchange, and combustion of monodisperse coke-ash particles of anthracite
culm on the portion of stabilized ascending motion of the gas suspension were carried out.

Certain Calculation Results and Their Discussion. We consider results of calculations of three variants for
the following initial data: β = 0.0012, ρp = 1600 kg ⁄ m3, ug,m = 10.5 m ⁄ sec, ZO2

 = 0.23, tw = 650oC, Kτ = 0.3, Kn
= 0.5, and R = 0.1 m. Variants I and II: δ = 0.2⋅10−3 m and CC = 0.114; III: δ = 0.3⋅10−3 m and CC = 0.183. The
first variant was calculated with the system of equations (1)–(4), (11), (12), and (25)–(31), whereas the second and
third variants were calculated with (1)–(4) and (19)–(23). The calculated material is illustrated in Figs. 1–6, where the
profiles of the averaged and pulsation characteristics of the nonisothermal gas-dispersed flow are presented. Figure 1
shows the distribution of the averaged velocities of the gas and the dispersed phase over the flow cross section. In the
axial zone where the drag force is directed upward (Faz D (ug − up) > 0), the dispersed phase lags behind the gas the
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more, the larger the particle. In the wall region, the interphase-slip velocity ug − up is negative and the bridging of par-
ticles is related primarily to their random motion (first term of the second equation of (1)). From Fig. 1, it is clear
that the velocity profile of the carrier medium becomes more filled with increase in the particle diameter (curves 1 and
3 are compared). This is due to the generation of the turbulent energy of the gaseous phase because of the separation
of the flow behind the large particle in flow (fifth terms of Eq. (4)).

Figure 2 gives the calculated values of the averaged gas and particle temperatures on the portion of stabilized
two-phase flow. Change in the temperature of coke-ash particles over the tube cross section is mainly dependent on
two factors: heat release due to the chemical reaction C + O2 = CO2 and heat exchange between the carrier medium
and the dispersed phase (second and third terms of Eq. (2)). The first factor turns out to be prevailing in the axial
zone, which ensures the efficient burnout of a solid fuel, whose intensity grows toward the flow axis. The second fac-
tor is determining near the wall (due to the sharp increase in the temperature head tp − tg), which finally leads to a
cooling of the coke-ash particles. From Fig. 2, it follows that the character of change in the tp(r) curves is close to
the character of change in the dependences tg(r). In the central part of the tube, the temperatures of both phases are
close, whereas in the wall region, the function tp(r) decreases much more slowly than the tg(r) curve under the influ-
ence of pulsation transfer in the solid phase (first term of Eq. (2)).

Figure 3 shows the profiles of the mixed moments of the pulsation characteristics of particles stp′wp′ t and

stp′ vp′ t over the flow cross section. The balance of the terms of Eq. (23) shows that the dominant role in formation of

Fig. 1. Profiles of longitudinal velocities of the gas and particles: variant I) 1)
ug and 2) up; variant III) 3) ug and 4) up.

Fig. 2. Profiles of averaged temperatures of the gas and coke-ash particles for
variant III: 1) tp and 2) tg.

Fig. 3. Distribution of the second moments of dispersed-phase-velocity and
temperature pulsations: variant I) 1) stp′wp′ t and 2) stp′ vp′ t; II) 3) stp′wp′ t and 4)
stp′ vp′ t; III) 5) stp′wp′ t and 6) stp′ vp′ t.

Fig. 4. Profiles of the second moments of dispersed-phase-velocity pulsations:
variant I) 1) swp′wp′ t and 2) svp′ vp′ t; II) 3) swp′ vp′ t.
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the profile stp′wp′ t(r) (curve 3) is played by the eighth swp′ vp′ t
dtp
dr

, sixteenth 
stp′wg′ t
τ

, and eighteenth 
6αΣstg′wp′ t
ρpcpδ

 terms

of the above equation. Rapid growth in the stp′wp′ t(r) curve in the range 0.0095 m < r < 0.033 m is related to the in-

crease in the functions swp′ vp′ t(r) (Fig. 4, curve 3), stp′wg′ t(r), and stg′wp′ t(r) and to the decrease in the dependence

tp(r) in this zone. The decrease in the dependence stp′wp′ t(r) on the descending portion 0.033 m < r < 0.085 m is due

to the decrease in the tangential Reynolds stress swp′ vp′ t and the mixed correlations stp′wg′ t and stg′ vp′ t in the interval

in question.
Figure 5 gives results of calculations of the third moments of particle-velocity and temperature pulsations, ob-

tained with expressions (19)–(21) and the transfer equations (29)–(31). From Fig. 5, it is clear that the character of
change in the dependence stp′ vp′2 t(r), calculated with the algebraic expression (20) (curve 4), is close to the character
of change in the same dependence found from (30) (curve 1). Unlike the character of the distribution of the functions
stp′ vp′2 t(r), no similarity is observed between the stp′wp′ vp′ t(r) curves computed with the approximate formula (19) and
the parabolic equation (31) (curves 2 and 5 are compared). As far as the behavior of the functions stp′wp′2 t(r) is con-
cerned (curves 3 and 6 are compared), curves 3 and 6 are sharply different in the axial zone 0 < r < 0.066 m, whereas
in the peripheral region 0.066 m < r, these dependences are similar.

Figure 6 gives the calculated values of the mixed correlations of fourth order of particle-velocity and tempera-
ture pulsations on the portion of steady-state ascending motion of the gas suspension. In Fig. 6, it is seen that the func-
tion stp′ vp′3 t(r) has a pronounced maximum at the point r = 0.088 m (curve 1); the presence of this maximum is due to
the influence of the third term svp′2 t

2∂tp ⁄ (ψ3∂r) of Eq. (26). On the ascending branch 0.0095 < r < 0.088 m, the charac-
ter of the stp′ vp′3 t(r) curve is determined by the increase in the function svp′ vp′ t(r) (Fig. 4, curve 2) and the decrease in
the tp(r) curve. On the descending portion r > 0.088 m, the decrease in the dependence stp′ vp′3 t(r) is related to the de-
crease in the correlation svp′ vp′ t and in the absolute value of the derivative ∂tp ⁄ ∂r in this zone. From a comparison
of the dependences stp′ vp′2 t(r) (Fig. 5, curve 1) and stp′ vp′3 t(r) (Fig. 6, curve 1), it is clear that in the peripheral part of
the channel 0 < r < 0.066 m, the values of the variable stp′ vp′2 t are higher than those of the moment stp′ vp′3 t, whereas in
the peripheral region 0.066 < r < 0.093 m, the correlation stp′ vp′3 t exceeds the quantity stp′ vp′2 t; this suggests that it is
necessary to allow for the fourth moments of particle-velocity and temperature pulsations in calculations of nonisother-
mal two-phase turbulent flows.

Thus, the presented mathematical model of aerodynamics and physicochemical processes reflects the basic
regularities of the processes of mass, momentum, and energy transfer in reactive two-phase systems on the portion of
stabilized flow of a gas suspension. The computational procedure proposed makes it possible to obtain detailed infor-

Fig. 5. Distribution of the third moments of particle-velocity and temperature
pulsations on the portion of stabilized flow of the gas suspension: variant I) 1)
stp′ vp′2 t, 2) stp′wp′ vp′ t, and 3) stp′wp′2 t; variant II) 4) stp′ vp′2 t, 5) stp′wp′ vp′ t, and 6)
stp′wp′2 t.

Fig. 6. Distribution of the fourth moments of particle-velocity and temperature
pulsations over the flow cross section for variant I: 1) stp′ vp′3 t, 2) stp′wp′2 vp′ t, 3)
stp′wp′3 t, and 4) stp′wp′ vp′2 t.
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mation on the distribution of the most important parameters of the working process, which can be useful in designing
flow-type chemical reactors.

NOTATION

C, concentration; c, heat capacity, kJ ⁄ (kg⋅K); E, activation energy, kJ ⁄ kmole; F, force, kg ⁄ (sec2⋅m2); G, gen-
eration of the turbulent gas energy in the trails behind particles, kg ⁄ (sec3⋅m); g, free-fall acceleration, m ⁄ sec2; H, uni-
versal gas constant, kJ ⁄ (kmole⋅K); K, velocity recovery factor (restitution factor); k, kinetic pulsation energy, m2 ⁄ sec2;
L, preexponential factor, m ⁄ sec; P, gas pressure, N ⁄ m2; Pr, Prandtl number; Q, heat release due to the heterogeneous
chemical reaction,  kJ ⁄ (sec⋅m3); q, thermal effect of the reaction C + O2 = CO2, kJ ⁄ kmole; R, channel radius, m; r, z,
and ϕ, radial, longitudinal, and transversal coordinates, m; S, mass-exchange coefficient, m ⁄ sec; t, temperature, oC; u,
v, and w, averaged components of the velocity vector, m ⁄ sec; Z, mass fraction of the component of the gas mixture;
α, coefficient of mass exchange between the gas and the particle, kJ ⁄ (sec⋅m2⋅K); β, true volume concentration of par-
ticles; γ, reaction-rate constant, m ⁄ sec; δ, particle diameter, m; ε, pulsation-energy dissipation, m2 ⁄ sec3; η, kinematic
viscosity, m2 ⁄ sec; λ, thermal conductivity, kJ ⁄ (sec⋅m⋅K); ρ, density, kg ⁄ m3; σ, empirical constant; τ, dynamic-relaxa-
tion time, sec; ψ1, ψ2, ψ3, and ψ4, coefficients, sec−1. Subscripts: a, aerodynamic resistance (drag) of a particle; con,
convective heat exchange; g, gas; m, mean (over the cross section); n, normal; p, particle; rad, radiant heat exchange;
t, pulsations; w, channel wall; τ, tangential; Σ, total heat exchange. Superscripts: ′, pulsation component in time aver-
aging; s t, time averaging;  ̂ , actual values.
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